

Improving ECOCLIMAP Physiography Map using Machine Learning Techniques and Satellite Image data

Eoin Walsh, Geoffrey Bessardon and Emily Gleeson

Thursday, October 1st 2020

UNIVERSITY OF LIMERICK OLLSCOIL LUIMNIGH

Bernal Institute

Project Motivation

- HARMONIE-AROME requires physiographic input ECOCLIMAP (Météo-France).
- ECOCLIMAP can be improved— Icelandic Meteorological Office.
- Need for a universal mode of improvement.
- Need for method that can offer improved resolution.

Project Motivation

1. Accuracy.

2. Resolution.

3. Universality.

1st October 2020

Project Goals:

- Can ground-based image data and/or Satellite data be used:
 - 1. To increase the accuracy.
 - 2. To improve the resolution.
 - 3. For universal improvement.

Resources:

- Google Streetview API.
- CORINE Land Cover Map. (European Environmental Agency)
- Copernicus Open Access Hub for Sentinel-2 Data. (European Space) Agency)

ECOCLIMAP-SG

- Global Landcover database, 1km resolution for 1st generation.
- ECOCLIMAP-SG has resolution of 300m.
- 33 landcover types in SG, 23 of which are present in Ireland.

ECOCLIMAP-SG webpage: https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/

1st October 2020

	19
	LCZ9
and	- LCZ8
1. 100	- LCZ7
	- LCZ6
a tate was been	- LCZ5
a section of the	- LCZ4
TA LON	- LCZ3
	- LCZ2
Sec. Sec.	– LCZ1
1 Contraction	flooded grassland
	 flooded trees
	- C4 crops
	– summer crop
a sea	- winter crop
	tropical grassland
100 A	temperate grassland
A CONTRACT	 boreal grassland
	- shrubs
Carlos and a second	 boreal needleleaf deciduous
	 temperate needleleaf evergreen
1.1.1	 boreal needleaf evergreenn
	 tropical broadleaf evergreen
	 temperate broadleaf evergreen
	 tropical broadleaf deciduous
	 temperate broadleaf deciduous
	 boreal broadleaf deciduous
	 permanent snow
	– rocks
	 bare land
	- rivers
	 inland waters
	sea

Machine Learning

'Machine Learning is the study of computer algorithms that improve automatically through experience'

- Tom Mitchell, Machine Learning (1997).

Neural Networks

1st October 2020

Neural Networks

1st October 2020

Convolutional Neural Networks (CNNs)

Image Source: https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4

1st October 2020

CNN for Image Classification

1st October 2020

The process of a machine learning

- Training Data input data and corresponding correct output.
- Validation Data Unseen Data to test the trained model.
- Epoch One iteration of all of the training + validation data through the model.

How does a model 'learn'?

Backpropagation:

The activations and weights of the network get adjusted appropriately, so as to reduce the error value.

Backpropagation

How does a model 'learn'?

1st October 2020

CNN for Image Segmentation

Image Source: https://d2I.ai/chapter_computer-vision/semantic-segmentation-and-dataset.html

1st October 2020

Transfer Learning 1

- A model trained for one task is re-purposed for use on a second related task.
- Re-purposing a CNN Classifier.

Transfer Learning 2

- A model trained for one task is re-purposed for use on a second related task.
- Re-purposing CNN Classifier as a segmentation model.

Images Source: https://www.learnopencv.com/pytorch-for-beginners-semantic-segmentation-using-torchvision/

1st October 2020

Transfer Learning 2

- A model trained for one task is re-purposed for use on a second related task.
- Re-purposing CNN Classifier as a segmentation model.

Images Source: https://www.learnopencv.com/pytorch-for-beginners-semantic-segmentation-using-torchvision/

1st October 2020

12 Week Synopsis

© Google

Bernal Institute

12 Week Synopsis

12 week Synopsis

• Remaining 8 weeks:

Investigation using Satellite Imagery.

Sentinel-2 Images plus Corine Landcover Images.

Segmentation algorithms.
Iabel algorithm.
15 label algorithm.

Improving CORINE Land Cover map in Estonia

The segmentation model shows a high 91.4% pixel-level accuracy on the first classification level with 75.8% and 59.7% on the second and third levels (Table 3). An example of segmentation model results and comparison to validation data can be seen on Figures 3 and 4.

Source:

Ulmas, Priit; Liiv, Innar; "Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification", March 2020.

Datasets Used

- BigEarthNet
 - $\succ \sim 600,000$ sentinel segments (1.2km² each), appended with cover labels.

Website: bigearth.net

Datasets Used

• Corine Land Cover Map.

> Split into Primary, Secondary and Tertiary Labels (5, 15 and 44 labels). \geq 100 metre resolution

Website: https://land.copernicus.eu/pan-european/corine-land-cover

1st October 2020

Datasets Used

• Sentinel-2 Satellite Images.

➢Obtained from Copernicus Open Access Hub.

>10 metre resolution.

Donegal Dublin Website: https://scihub.copernicus.eu/dhus/#/home

1st October 2020

Why use Corine as training output?

- Corine (100m) has a better resolution than ECOCLIMAP-SG (300m)
- Corine considered to be 85% accurate. [1]

Sentinel-2

ECOCLIMAP-SG

CORINE

[1] CORINE LAND COVER 2012 FINAL VALIDATION REPORT Link: https://land.copernicus.eu/user-corner/technical-library/clc-2012-validation-report-1

1st October 2020

The Model

• 'Resnet-50', pre-trained on the ImageNet dataset.

• Transfer Learning..

The Model

• Classifier Model re-purposed as a segmentation algorithm.

waters, agri-areas.

The Model

• Classifier Model re-purposed as a segmentation algorithm.

Analysing Model results

- Compare ECOCLIMAP and Model Prediction with best map we have - CORINE.
- Intersection over Union to compare accuracy of categories.
- Visual Inspection to demonstrate better accuracy.

Intersection Over Union (IOU)

- IOU of 1 prediction completely correct.
- IOU of 0 prediction completely incorrect.

Primary Training Data

Sentinel-2 Segments

1st October 2020

Donegal

CRT in Foundations of Data Science & Met Éireann

CORINE Segments

Bernal Institute

Primary Results

89.8%

92.6%

Primary Results - Accuracy

Primary Results - Resolution

Sentinel-2

ECOCLIMAP-SG

1st October 2020

CRT in Foundations of Data Science & Met Éireann

Model Prediction

Primary Results - Resolution

Model Prediction

Interesting Observations

MODEL PREDICTION

Aran Islands

Secondary Training Data Donegal

CORINE Segments

Sentinel-2 Segments

Dublin

CRT in Foundations of Data Science & Met Éireann

Bernal Institute

Secondary Results

ECOCLIMAP

82.4%

MODEL PREDICTION

87.3%

1st October 2020

- Marine Waters
- **Continental Waters**
- **Coastal Wetlands**
- Inland Wetlands
- Open Space No Vegetation
- Scrub
- Forest
- Hetero-Agri Areas
- Pastures
- Permanent Crops
- Arable Land
- Urban Green Areas
- Construction
- Industry
- urban fabric

Secondary Results

INTERSECTION OVER UNION

1st October 2020

Dublin

ECOCLIMAP

Model Prediction

1st October 2020

CRT in Foundations of Data Science & Met Éireann

Bernal Institute

Further Work

- Custom labels.
- More nuanced training data selection.
- Attempt a model trained across multiple jurisdictions.

Conclusions

- Machine Learning model shows an improved accuracy on ECOCLIMAP-SG.
- Machine Learning model offers a universal method of improving the map.
- Machine Learning shows a viable way of improving the resolution of the map.

